Unterrichtsmaterial Mathematik Analysis Die Bedeutung der zweiten Ableitung
Die Bedeutung der zweiten Ableitung
Funktionale Zusammenhänge zwischen zwei Zahlenbereichen (üblicherweise x und y=f(x)) werden gern als Graphen dargestellt, deren Steigungsverhalten sich in vielfältiger Weise ändern kann. Der Graph kann steigen, dann immer stärker steigen oder immer weniger stark, Entsprechendes gilt für das Fallen. Analytisch wird dieses graphische Verhalten beschrieben durch die erste bzw. zweite Ableitung und insbesondere deren Vorzeichen bzw. Nullstellen. Haben die Schüler die Ankeridee der ersten Ableitung verstanden, stellt auch der Transfer auf die Ableitung der Ableitung bzw. die zweite Ableitung kein großes Problem mehr dar.